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Abstract
Massive increase in radical species can lead to oxidative stress, promoting cell injury and death. This review focuses on
experimental evidence of oxidative stress in critical illnesses, sepsis and multisystem organ dysfunction. Oxidative stress could
negatively affect organ injury and thus overall survival of experimental models. Based on this experimental evidence, we could
improve the rationale of supplementation of antioxidants alone or in combination with standard therapies aimed to reduce
oxidative stress as novel adjunct treatment in critical care.
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Introduction

A balanced immune response from all organ systems is

crucial for survival from critical illness. However,

during critical illnesses, the immune response fails to

protect the body. Oxidative stress defines a discre-

pancy in release of oxidizing chemical species and

their effective removal by protective antioxidants and

scavenger enzymes. Massive increase in free radicals

can lead to an overwhelming inflammatory response

and tissue injury. This review focuses on experimental

evidence of oxidative stress in critical illnesses,

characterized by tissue ischemia–reperfusion injury

and by an intense systemic inflammatory response

such as during sepsis and acute respiratory distress

syndrome (ARDS). A better knowledge of oxygen

radical-mediated mechanisms may lead to improved

therapies in the treatment of critically ill patients.
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Activation of phagocytes, exceeding production of

nitric oxide (NO) and reactive oxygen species (ROS),

release of iron, copper ions and metalloproteins are

main sources of oxidative stress during critical

illnesses, such as sepsis or ARDS as well as burn

trauma [1–3]. The evidence described below demon-

strates the role of severe oxidative stress in critical care.

Oxidative stress in experimental models

Ischemia– reperfusion models. Tissue ischemia–

reperfusion injury represents a typical form of

oxidative damage. The role of ROS as mediators of

the “reperfusion injury” syndrome has been shown in

different organs [4–8]. ROS can induce disruption of

endothelial cells with subsequent microvascular

thrombosis and organ dysfunction [9].

In a rat model of hepatic ischemia/reperfusion, hepatic

antioxidant glutathione (GSH) was consumed,

accompanied to excessive ROS production [10].

Treatment with dimethylsulfoxide reduces hepatic

GSH consumption and tissue damage. Interestingly,

the protective effect of dimethylsulfoxide occurs when

endogenous supply of GSH is reduced to below 30%

of normal values, showing that normal liver has a

functional antioxidative reserve that must be depleted

before injury occurs.

Hemorrhagic shock, followed by resuscitation,

represents a widespread ischemia–reperfusion insult.

In a rat model of hemorrhagic shock-resuscitation,

treatment with superoxide dismutase (SOD) þ

catalase peroxidase (CAT) did not produce any

significative difference in organ blood flow and muscle

depolarization during hemorrhagic shock, but signifi-

cantly improved repolarization of cell membrane after

resuscitation, highlighting the role of ROS in damage

to excitable cell membrane [11].

Sepsis model. Sepsis, the main cause of morbidity and

mortality in intensive care units in the United States

[12] and in Europe [13], is a complex disease

characterized by different hemodynamic and

metabolic alterations, leading to multiple-organ

dysfunction and death [14].

In an in vitro model of microvascular injury by

lipopolysaccharide (LPS) (priming step) and heat

shock (activation step), resembling the damage

observed in multiple organ dysfunction syndrome

(MODS), scavenging of the hydroxyl radical by

dimethylsulfoxide, a membrane-permeable oxygen

radical scavenger, and high levels of allopurinol, a

xanthine oxidase inhibitor, blocked apoptosis when

applied before LPS priming, suggesting a role for the

hydroxyl radical as an intracellular signal in endothelial

cell apoptosis [15]. Recently, an interesting study using

a model of sepsis induced by cecal ligation and

perforation showed that rats that went on to die of

their sepsis had a significant increase of TBARS as an

index of lipoperoxidation, protein carbonyls as an

index of protein damage, and SOD which were early

predictors of mortality. Most importantly, non-

surviving rats showed a marked increase of SOD

without a proportional increase of CAT. This different

modulation of SOD and CAT in sepsis can lead to

overproduction of hydrogen peroxide or hydroxyl

radicals, increasing cell damage [16]. It is intriguing in

the understanding the progression of sepsis that a

sustained SOD/CAT imbalance occurs in lethal sepsis,

in contrast to non lethal sepsis [17].

In a model of sepsis by cecal ligation and puncture,

early inflammatory events in the lung are mediated by

large quantities of nitric oxide radical produced by

inducible nitric oxide synthase (iNOS) as demon-

strated by decrease of arginase II, involved in

generation of L-ornithine for biosynthesis of gluta-

mate, L-proline, and polyamines, and an upregulation

of iNOS [18]. Recent evidence in a similar model of

sepsis confirms iNOS activity in pulmonary inflam-

matory cells is the major determinant of pulmonary

oxidant stress [19].

NO has been implicated in the pathogenesis of

cardiovascular alterations in septic shock [20–22].

Large amounts of NO are produced as consequence of

the increase in iNOS activity in response to bacterial

endotoxin or inflammatory cytokines; the enhanced

formation of NO contributes to vascular collapse and

myocardial dysfunction, mediating the depressant

effects of proinflammatory cytokines, namely tumor

necrosis factor a (TNFa) and interleukin-1 b (IL-1b),

in septic shock [23–26]. Endotoxin administration

produced less hypotension in iNOS deficient mice

[27], and in mice treated with a selective pharmaco-

logical inhibitor of iNOS [28].

The increased production of NO, induced by

neuronal nitric oxide synthase isoform (nNOS),

mediated the deficit in arteriolar conducted vasocon-

striction sepsis related [29].

NO reduces myocardial contractility by reducing

calcium affinity of contractile apparatus and may cause

direct myocyte damage by peroxynitrite production

[30]. Proposed alternative mechanisms by which NO

can impair the cardiovascular system during septic

shock include inactivation of alpha-adrenoreceptor by

peroxynitrite [31] and inhibition of vasopressin release

[32]. It has been suggested that NO could have

beneficial effects in sepsis related to counteraction of

the released vasoconstrictors substances, to inhibition

of leukocyte rolling and adhesion and to inhibition of

nuclear factor-kB (NF-kB) [20] (Figure 1).

An excess of NO synthesized by iNOS may play an

important role in septic diaphragmatic failure

[33–35]; increased levels of NO, by production of

peroxynitrite, harm diaphragmatic mitochondrial

function, which can contribute to the impairment of

muscle contractility [36].
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The overproduction of NO has been shown to

contribute to increased gut epithelial permeability in

different models of inflammation [37]; moreover,

iNOS might be involved in intestinal ischemia–

reperfusion-induced loss of gut barrier function,

playing an important role in the development of

systemic inflammation and distant organ failure [38].

Endotoxic shock by LPS induced severe oxidative

injury reflected by increased plasma levels of lipo-

peroxides malondialdehyde and 4-hydroxynonenal,

reduced plasma total antioxidant capacity and high

concentration of nitrites/nitrates. Interestingly,

depletion of the liver glutathione yielded higher levels

of lipoperoxides and lower plasma antioxidant

capacity, confirming the important role of glutathione

as antioxidant, but, unexpectedly, blunted the increase

in iNOS and plasma nitrites/nitrates, probably

because of iNOS dependence of reduced thiols.

These results highlight the complex interaction

exisisting among oxidants, antioxidant systems and

nitric oxide [39].

ALI/ARDS models. ARDS is an inflammatory disease

initiated by a wide variety of systemic and/or

pulmonary insults, that leads to disruption of the

alveolar-capillary unit and to a breakdown in the

barrier and gas exchange functions of the lung [40].

ROS and reactive nitrogen oxide species (RNOS)

play an important role in the pathogenesis of ARDS

[41,42]. Neutrophils and alveolar macrophage are

considered the most important source of ROS in acute

lung injury (ALI). In addition, many structural cells

such as epithelial cells, endothelial cells and interstitial

cells can contribute to ROS production [43]. Reduced

nicotinamide-adenine dinucleotide phosphate

(NADPH) oxidase complex, xanthine oxidase and

iNOS are the main pathways of oxidants production.

Evidence of oxidative stress has been shown in different

models of ALI/ARDS [44–46] and during mechanical

ventilation with elevated tidal volume[47,48]. ROS

and RNOS increase epithelial and endothelial

permeability, impair ion transport and adenosine

triphosphate (ATP) synthesis in epithelial cells, and

reduce the synthesis of surfactant, so contributing to

the most important pathologic findings of ARDS [40].

Endotoxin-induced lung injury is reduced by NADPH

oxidase and iNOS inhibition [49,50] as well as in iNOS

gene deficient mice [51]; moreover, iNOS knockout

mice show a decreased inflammatory response charac-

terized by reduced neutrophil accumulation and

cytokine expression [52]. Interestingly, the increased

production of ROS induced by cyclic mechanical

stretch may participate to development of ventilatory

induced lung injury [53].

Antioxidant and scavenger therapy

Restoring endogenous antioxidants (i.e. antioxidants

or scavenger SOD or SOD mimetics) or supplement-

ing exogenous agents with antioxidant properties

(i.e. N-acetylcysteine) or administering drugs that

reduce oxidant production (i.e. allopurinol, a xanthine

inhibitor, or desferoxamine, a iron scavenger)

represent different modalities of antioxidant therapy

[54–57].

Figure 1. Different effects of Nitric oxide. Endothelial nitric oxide synthase (eNOS) produces physiologically small amounts of NO, which

produce beneficial effects. Inducible isoform (iNOS), activated in response to proinflammatory signals, is mainly responsible for larger and

more persistent production of NO and, consequently, for its detrimental effects. A constantly upregulated eNOS activity could also lead to

large NO concentrations which may contribute to deleterious effects.
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Antioxidant therapy in preclinical models

Several therapeutic approaches have been evaluated in

different animal models in order to reduce oxidative

damage (Table I).

Superoxide dismutase. In a sepsis model, administration

of scavenger SOD has improved survival in rats when

administered 24 h before induction of sepsis, whereas it

did not show any beneficial effect when administered

after induction of sepsis [58]. Recombinant human

SOD improved both endotoxin and tumor necrosis

factor-induced ALI in sheep [59,60]. Pre- or post-

treatment with EUK-8, a synthetic SOD with both

SOD-mimetic and catalase mimetic properties,

reduced lung injury in endotoxemic models [61,62].

SOD mimetics have been proposed as novel

therapeutic agents, showing beneficial effects in

ischemia– reperfusion injury, septic shock and

zymosan-induced shock [63,64]. In a LPS induced

lung injury model, administration of catalase

prevented the severity of oxidative stress and the

development of lung injury [65].

Tempol. Tempol, a membrane-permeable radical

scavenger able to interfere with many radicals

(superoxide anions, hydroxyl radical, and

peroxynitrate), attenuated the degree of multiorgan

failure (MOF) induced by zymosan [66]; there is

increasing evidence that tempol may be useful in the

therapy of ischemia–reperfusion injury, shock and

sepsis [67–70].

N-acetylcysteine. N-acetylcysteine (NAC) has been

widely used as an antioxidant in experimental models.

NAC has direct and indirect (by conversion, in vivo, to

L-cysteine, which repletes intracellular glutathione

stores) antioxidant properties. In endotoxic shock,

pre-treatment with NAC decreased NF-kB activation

[71], attenuated TNF-a production, reduced blood

lactate levels and increased survival [72]. In a model of

fluid resuscitated endotoxic shock, administration of

NAC before administration of the endotoxin improved

oxygen extraction with an enhanced regional blood flow

in mesenteric, renal and femoral vasculatures [73].

However, when NAC infusion was started after 12 h of

endotoxin administration, there was no improvement

in local and regional hemodynamics, metabolism, or

oxygen exchange despite the increased glutathione

concentration [74]. The lack of efficacyof delayed NAC

administration highlights the importance of early

antioxidant supplementation before that the

hemodynamic and metabolic effects induced by sepsis

are fully established [56].

In different models of inflammation, NAC has

reduced lung [75–78] and intestinal damage [79,80].

Intratracheal administration of NAC by liposomal

encapsulation prolonged the protective effect in a

model of lung injury [81]. In models of septic shock

co-administration of NAC with a-tocopherol [82]

suppressed NF-kB, co-administration with vitamin E

and b-carotene [83] reduced lipid peroxidation and

with desferoxamine [84] reduced TBARS production,

improved the balance between catalase and SOD

activities, limiting neutrophil infiltration and mitho-

condrial dysfunction. In a model of ALI induced by

intratracheal LPS, the co-administration of NAC with

deferoxamine reduces TBARS production, mithocon-

drial superoxide production, blunting the inflamma-

tory response [85]. NAC may prevent the septic

phrenic nerve dysfunction [86,87].

Vitamin E. Vitamin E, the most important antioxidant

against lipid peroxidation, has been shown to reduce

oxidative stress in sepsis models [88]. Administration

of liposomal a-tocopherol has reduced lipid

peroxidation in a rat model of hypoxia-induced lung

injury [89] and decreased the number of neutrophils

in the airways, preventing lung injury in a mice model

of ALI (ALI) induced by aerosolized LPS [90].

a-tocopherol showed protective effect, reducing lipid

peroxidation, in models of mild and severe brain

injury [91].

iNOS inhibition. Selective inhibition of iNOS has been

shown to be protective, probably by reducing

peroxynitrite generation, in hemorrhagic and

endotoxic shock [92–94]. Interestingly, the beneficial

effects of ascorbate on the impaired arteriolar

vasoconstriction in sepsis may be related to iNOS

inhibition [95]. However, a clinical trial of a non-

selective inhibitor of NO in patients with septic shock

resulted in an increase in mortality in the treated group

[96]. This implies a dose-dependent effect of NO in

sepsis. Thus, the role of iNOS inhibition in sepsis is still

controversial [97].

Conclusions

There is increasing evidence that oxidative stress play

an important role in the beginning and establishment

of the inflammatory diseases, representing a common

pathway for life-threatening critical illnesses such as

septic shock, ARDS.

Supplementation with antioxidants seems to be the

logical answer to reduced levels of antioxidants but the

benefit of this therapy may depend on many variables

including class of drugs, dose and timing of

administration, differences in patient population and

size of the samples.

An intense study of oxygen radical-mediated

mechanisms may lead to improve current therapies

in critical care medicine.
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Table I. Antioxidants in preclinical models.

Authors Model Antioxidants Main results

Warner [58] Sepsis (CLP) SOD Pre-treatment improved survival; no survival

improvement when SOD administered after

sepsis induction

Amari [59] TNF-induced lung injury Rh-SOD Attenuated pulmonary hypertension; reduced thromoboxane

A2/prostacycline metabolites

Koyama [60] Endotoxin-induced lung injury rh-SOD Attenuated lung injury

Gonzalez [62] LPS induced ARDS EUK-8 (synthetic superoxide dismutase) Attenuated lung injury

Cuzzocrea [63] Zymosan-induced shock M40401 (selective superoxide dimutase mimetic) Attenuated organ failure and systemic inflammation

Milligan [65] Endotoxin-induced lung injury Catalase Attenuated lung injury

Cuzzocrea [66] Zymosa-induced MOF Tempol Attenuated degree of MOF

Zacharowski [68] Endotoxin-induced MODS Tempol Attenuated renal/hepatocellular dysfunction

Matejovic [69] Bacteremia (continuous infusion of

pseudomonas aeruginosa)

Tempol Partially attenuation of endothelial/coagulation

and oxidative stress by tempol post-treatment

Liaw [70] Sepsis (CLP) Tempol Attenuated organ dysfunction and reduced mortality

Blackwell [71] Endotoxin-induced lung injury NAC Decreased lung injury and NF-kB activation

Zhang [72] Escherichia coli endotoxin NAC Attenuated TNF-a production, reduced lactate levels,

increased survival

Zhang [73] Escherichia coli endotoxin NAC Improved O2 extraction, enhanced regional blood flow

Vassilev [74] Endotoxic shock NAC (postendotoxemia) No hemodynamics improvement

Cuzzocrea [75] Carrageenan-induced lung injury NAC Reduced oxidant lung injury

Bernard [76] Endotoxin-induced ARDS NAC Attenuated lung injury

Davreux [77] Endotoxin-induced acute lung injury NAC Attenuated lung injury

Ozdulger [78] Sepsis (CLP) NAC Reduced lung apoptosis

Cuzzocrea [79] Zymosan-induced MOF NAC Reduced oxidative stress and organ injury

Cuzzocrea [80] Ischemia–reperfusion injury NAC Reduced inflammatory response

Fan [81] Ischemia–reperfusion injury Liposomal NAC Reduced lung injury

Fox [82] LPS-cell activation NAC þ alpha-tocopherol Suppressed kupffer cell activation

Kheir-eldin [83] Endotoxin brain injury NAC þ vitamin E þ betacarotene Reduced brain oxidative stress

Ritter [84] Sepsis (CLP) NAC þ desferoxamine Reduced oxidative stress, improved survival

Ritter [85] LPS-induced lung injury NAC þ desferoxamine Attenuated lung oxidative damage

Atis [87] Sepsis (CLP) NAC Attenuated phrenic nerve dysfunction

Minko [89] Hypoxic lung injury Liposomal alpha-tocopherol Reduced lipid peroxidation

Rocksen [90] Inhaled endotoxin-induced lung injury Alpha-tocopherol Reduced neutrophils migration and airway inflammation

Inci [91] Brain injury Alpha-tocopherol Reduced brain lipid peoxidation

Arkovitz [92] Endotoxin-induced pulmonary transvascular Selective iNOS inhibitors Prevented increase of pulmonary index flux

Saetre [93] Group A streptococcal sepsis Aminoethyl–isothiourea (nitric oxide synthase inhibitor

and radical scavenger)

Prolonged survival, counteracted hemodynamic deterioration

Szabo [94] Hemorrhagic shock Mercaptoethylguanidine (iNOS inhibitor) Improved hemodynamics, improved survival, reduced

intestinal lipid peroxidation

Wu [95] Sepsis (CLP) Ascorbate Reduced nitric oxide production, increased

survival

ARDS, acute respiratory distress syndrome; CLP, cecal ligation and puncture; iNOS, inducible nitric oxide synthase; LPS, lipolysaccharide; MODS, multiple organ dysfunction syndrome; MOF, multi

organ failure; NAC, N-acetylcysteine; NF-kB, nuclear factor-kB; rh-SOD, recombinant human superoxide dismutase; SOD, superoxide dismutase; TNF, tumor necrosis factor.
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